Меню

Что нужно чтобы сокращались мышцы

Как сокращать мышцы в бодибилдинге

Приветствую, товарищи. Сегодня у нас с вами весьма важная тема, родственная развитию нейромышечной связи. А поговорим мы о том, как сокращать мышцы во время тренировок, занимаясь бодибилдингом. Как вы уже знаете, в нашем деле необходимо концентрироваться не на том, чтобы побольше поднять. Задача бодибилдера набор качественной мышечной массы. Поэтому, в отличие от пауэрлифтера, в бодибилдинге важно правильно сокращать и чувствовать свои мышцы. От этого напрямую зависит не только результат тренировок, но также скорость роста и качество массы.

Почему важно разобраться, как сокращать мышцы правильно?

Начну я с типичного примера, в котором неофит приходит в тренажерный зал и, разумеется, горит желанием накачать большую мышцу. Если наш друг вообще не читал о том, как начать качаться, то дело будет еще сложнее. Он увидит в зале кучу народу, одни поднимают нереальные штанги на 1-2 раза, другие долбят бицепс скромными весами, а кто-то, вообще, занимается фитнесом.

Следовательно, у нашего друга глаза разбегаются, и он не знает, за что схватиться. Чаще всего такой товарищ с ходу подлетает к скамье для жима лежа, накидывает побольше блинов и пытается сделать все возможное, чтобы пожать это дело. Если даже он позаботился о страховке, его не придавит и он выжмет вес, то ничего хорошего для роста массы не получит.

По традиции прикрепляю видео по теме выпуска:

Например, при подтягиваниях или тяге в наклоне, новичок будет качать бицепс и предплечье, вместо спины. И все лишь потому, что он не знает о правильном сокращении мышц.

По итогу, если человек так и продолжает заниматься, не ведет дневник тренировок, то очень вероятен дисбаланс. Как минимум результаты могут быть далеки от ожидаемых. Человек, который не умеет сокращать и чувствовать мышцы часто прибегает к читингу, что еще больше усугубляет ситуацию. Я уже не говорю про риск получения травмы.

Именно поэтому так важно научиться правильно сокращать свои мышцы в каждом упражнении. Процесс тренировок в бодибилдинге не должен носить характер тупого поднятия железяк.

Почему сокращение мышц так важно именно в бодибилдинге

Запомните самое главное отличие бодибилдинга от пауэрлифтинга:

  • Для пауэрлифтера вес является целью тренировок;
  • В тренировках бодибилдера вес – лишь инструмент для достижения цели;

Понимаете идею? Допустим вам надо забить гвоздь в доску, вы можете сделать это молотком на 50 гр, 100 гр, или кувалдой в 2 кг, что вы выберите? Я думаю, скорее всего, человек с опытом возьмет что-то среднее, ведь этот инструмент оптимально подходит под данную задачу.

В бодибилдинге все аналогично, вы можете забить на сокращение мышц и накидывать веса на штангу пока что-то не порвете себе. Но есть и другой путь — научиться грамотно пользоваться инструментом.

Работа с большими весами становится опасной после преодоления некоторых пределов. Проще говоря, риск травмы начинает существенно расти, когда веса переваливают за 100 кг, например, в жиме лежа.

В свою очередь, мышечное чувство позволяет направить нагрузку именно туда, куда нужно, в каждом упражнении. Если пауэрлифтер вообще не парится по этому поводу и тянет вес всем, чем только можно, то с бодибилдером все иначе. Если он жмет штангу лежа, то делает это грудными, по максимуму выключая трицепсы. Именно поэтому в бодибилдинге существует столько форм выполнения этого упражнения.

Как научиться правильно сокращать мышцы

Чувство своих мышц напрямую связано с нейромышечной связью. Для его развития новичок должен работать с минимальными весами. Кстати, дома можно отрабатывать сокращение мышц без всего. Просто представляете, что у вас в руках штанга и жмете ее, при этом концентрируетесь на сокращении нужных мускулов.

Можно порекомендовать следующие способы для тренировки данного навыка:

  1. В ходе выполнения упражнения думайте о целевой мышце. Старайтесь забыть о штанге и о том, что вам нужно выжать вес. Вместо этого, старайтесь сокращать нужные мышцы;
  2. В таких упражнениях, как жим лежа, подтягивания, тяги в наклоне, воображайте, что у вас нет рук выше локтя. То есть представьте, что, когда жмете штангу лежа, вам нужно просто поднимать локти вверх;
  3. Учитесь напрягать свои мышцы в спокойном состоянии. Вы много раз видели, как качки на стероидах играют грудными мышцами. Именно это и говорит о том, что они умеют сокращать мышцы и хорошо их чувствуют;

Я советую вам использовать все 3 способа. В связи с тем, что с больши́м весом на штанге вы не можете концентрироваться на сокращении мышц я и пишу, что нужны легкие веса. Когда у вас субмаксимальная нагрузка, ни о какой концентрации и речи быть не может.

Поэтому только легкие веса или пустой гриф, где это возможно. Отработка сокращения мышц всецело посвящена воображению. Поэтому пробуйте представить, что у вас нет половины руки, при работе на грудные и на спину. Идея тут в том, что рассматриваемые мышцы тянут именно локоть. Таким образом, вам проще реализовать их функцию.

Используйте эти советы все вместе и вопрос, как сокращать мышцы, покинет вас в будущем.

Заключение

Ну что, друзья, пришла пора закругляться. Я рассказал вам о том, как научиться сокращать мышцы, занимаясь бодибилдингом. У вас теперь есть несколько практических советов. Часть можно использовать не только дома, но и почти где угодно.

Учитесь играть мышцами, фишка этого в том, что вы не только учитесь сокращать и чувствовать мышцы, но и можете делать это везде.

Я советую не пренебрегать этими советами, ведь от них зависят ваши результаты и отсутствие травм. С одним и тем же весом вы будете растить мышцы значительно эффективнее того, кто не умеет сокращать свои мускулы правильно.

В общем-то, это все, что я хотел сегодня рассказать. Я буду признателен вашим лайкам, репостам и комментариям. Не забывайте подписаться на рассылку новых статей сайта, чтобы ничего не упустить. На этом я с вами прощаюсь, хорошего дня!

источник

Сокращение мышц

Специфиче­ская деятельность мышечной тка­ни — ее сокращение при возбужде­нии. При сокращении мышца укорачивается и развивает силу, которая вызывает растяжение упругого компонента. Последний играет роль буфера при передаче усилий, возникающих в сократительном компоненте, к подвижным звеньям, вследствие этого движения звеньев тела становятся плавными.

Механизм мышечного сокращения обусловлен взаимодействи­ем актина и миозина. Взаимодействие актина и мио­зина тормозится системой мышечных белков. На поверхности актиновых нитей имеется два белка — тропонин и тропомиозин. Поступление импульса к мышце сопровождается выходом из саркоплазматического ретикулума мышечного волокна ионов Са 2+ , которые, взаимодействуя с белком тропонином, образуют комплекс, и он толкает тропомиозин в желобки между двумя це­пями актина. За счет гребковых движений головок (специально­го белка) миозиновых нитей актиновые нити втягиваются на миозиновые, и мышца укорачивается. Кальциевый насос транспор­тирует ионы Са 2+ в систему саркоплазматического ретикулума, происходит отсоединение поперечных мостиков миозина от ак­тина, и мышца расслабляется. Непосредственным источником энергии для сокращения является АТФ. Энергия АТФ обеспечи­вает перемещение поперечных мостиков. Молекула АТФ связы­вается с поперечным мостиком после завершения его гребкового движения. Расщепление АТФ до АДФ и фосфата — обязательное условие для поперечного мостика к актину.

Различают одиночное и тетаническое сокращение мышцы.

Одиночное сокращение мышцы. На однократное кратко­временное раздражение, например электрическим током, мышца отве­чает одиночным сокращением. При записи этого сокращения на кимо­графе отмечают три периода; латент­ный—от раздражения до начала сокращения, период сокращения и период расслабления.

Общая продолжительность оди­ночного сокращения икроножной мышцы лягушки составляет 0,1 с. Из этого времени 0,01 с приходится на латентный период, 0,04 — на со­кращение и 0,05 с — на расслабле­ние. У млекопитающих одиночное сокращение скелетных мыши длится 0,04-0,1 с.

Во время латентного периода в мышце происходят процессы, при ко­торых освобождается энергия для мышечного сокращения. Пик потен­циала действия по времени совпа­дает с латентным периодом и нача­лом сокращения.

Время одиночного сокращения неодинаково в различных мышцах у одного и того же животного. Так, в красных волокнах мышц оно значительно больше, чем в белых. Сила мышечного сокращения в определенной степени зависит от силы раздра­жения. При раздражении током по­роговой силы сокращение мышцы едва заметно. Дальнейшее увеличе­ние силы тока вызывает усиление со­кращения мышцы до некоторой мак­симальной величины. Сила мышеч­ного сокращения зависит от количе­ства возбужденных мышечных воло­кон, которые обладают различной возбудимостью. Слабое раздраже­ние действует на наиболее возбуди­мые волокна, по мере усиления раз­дражения начинают реагировать и другие волокна, наконец наступает момент, когда возбуждаются все мы­шечные волокна — наступает мак­симальное сокращение мышцы.

Советуем прочитать:  Гиперплазия в мышцах что это

Тетаническое сокраще­ние мышцы. Если к мышцам по­ступают несколько возбуждающих импульсов, ее одиночные сокраще­ния суммируются, в результате этого происходит сильное и длительное сокращение мышцы. Длительное со­кращение мышцы при ее ритмиче­ском раздражении называется тетаническим сокращением или тетану­сом. Meханизм тетанического сокращения мышцы был выяснен Гельмгольцем в опытах на нервно-мышечном препарате. При нанесении на мышцу одиночных раздражений, следующих друг за другом с различ­ными интервалами времени, наблю­дают сокращения разной формы. В том случае, когда раздражения от­делены друг от друга интервалом вре­мени, превышающим продолжитель­ность одиночного сокращения, воз­никают одиночные сокращения. При более частых раздражениях, если каждый импульс возбуждения дей­ствует на мышцу в тот момент, когда она уже начинает расслабляться, от­мечают неполный, или зубчатый, те­танус.

Гладкий тетанус. Если же раздражения настолько частые, что они воздействуют на мышцу до начала ее расслабления, то получится длительное непрерыв­ное сокращение мышцы — гладкий тетанус. При очень большой частоте раздражений каждое очеред­ное раздражение будет попадать на фазу абсолютной рефракторности и мышца вообще не сократится.

Высота сокращения мышцы при тетанусе больше, чем при одиночном сокращении. Объясняя этот эффект, Гельмгольц рассматривал тетанус как простое геометрическое накла­дывание (суперпозицию) одиночных сокращений. При тетанусе каждое последующее сокращение мышцы в ряду складывающихся одиночных сокращений начинается от той точки, где мышцу застает новое раздраже­ние, и ее сокращение идет от этой точки, как от точки покоя. Дальнейшие исследования показали, что явление суперпозиции при тетанусе нельзя сводить к простому складыванию, то есть суммированию механических эффектов. Эффект от двух следую­щих друг за другом раздражений не совпадает с арифметической суммой одиночных сокращений, он может быть больше или меньше данной суммы. Следовательно, способность к новому сокращению после каждого предшествующего импульса возбуж­дения неодинакова.

Рис. 7. Сокращение скелетной мышцы при различной частоте раздражения:

I – одиночное сокращение; II – зубчатый (неполный) тетанус; III – гладкий (полный) тетанус; М – механограмма; ПД – потенциал действия; 1 – фаза сокращения; 2 – фаза расслабления

Рис. 8. Структура сократительного механизма нормальной скелетной мышцы.

Высота мышечного сокращения при тетанусе зависит от ритма раздражения, а также от возбудимости и лабильности, которые изменяются в процессе деятельности мышцы. Те­танус наиболее высокий при опти­мальном ритме, когда каждый последующий импульс действует на мыш­цу в фазу экзальтации, вызванной предыдущим импульсом. В этом случае создаются наилучшие (оптимальные) условия для работы мышцы.

Существуют два вида сокращения мышц: изотоническое и изометрическое.

Когда мышца при раздражении сокращается, не поднимая никакого груза, напряжение ее мышечных волокон не изменяется и равно нулю; такое сокращение называют изотоническим (isos — равный, tonus — напряжение). Если концы мышцы закреплены, то при раздражении она ни укорачивается, а лишь сильно на­прягается.

Сокращение мышцы, при котором ее длина остается постоянной, называется изометрическим (isos — рав­ный. metron — мера, размер). В этом случае сократительный компонент укорачивается за счет растяжения пассивного упругого компонента. Ес­ли у изометрически сокращающей­ся мышцы освободить сухожилие, то мышца станет сокращаться изотонически, а предварительно растянутый упругий компонент очень быстро укорачивается. Упругий компонент при изометрическом сокращении может увеличивать свою длину на 2-6% от длины покоя.

источник

Сокращение мышц. Принцип работы мышцы человека.

О том, как устроена мышечная клетка и что представляет из себя мышца, Вы уже имеете понятие. Но, как же осуществляется сокращение мышцы? Что заставляет наши мышцы работать?

Говоря доступным языком, сокращение мышц происходит под воздействием нервных импульсов, которые активируют нервные клетки спинного мозга – мотонейроны, ответвления которых — аксоны подведены к мышце. Если разобраться подробнее, то внутри мышцы аксон разделяется и образует сеть ответвлений, которые, подобно электрическим контактам, «подсоединены» к мышечной клетке. Посредством таких контактов и осуществляется сокращение мышц.

Получается, что каждый мотонейрон управляет группой мышечных клеток. Такие группы получили название – нейромоторные единицы, благодаря которым человек может задействовать в работе часть мышцы. Поэтому, мы можем сознательно контролировать скорость и силу сокращения мышц.

Итак, мы рассмотрели процесс «запуска» сокращения мышц. Теперь давайте детально разберемся, что же происходит непосредственно внутри мышцы во время сокращения. Этот материал несколько сложен для восприятия, но весьма важен. Вам необходимо разобраться в нем, иначе Вы не сможете до конца уяснить, каким образом растут наши мышцы.

Сокращение мышц в грубом приближении

В первую очередь необходимо уяснить, что миофибрилла состоит из многочисленных нитей двух белков: миозина и актина, которые располагаются вдоль миофибриллы. Причем, миозин – толстые нити, а актин – тонкие нити. Этим и объясняется светло-темное полосатое строение миофибриллы (темные полосы – миозин, светлые полосы – актин).

В литературе темные участки миофибриллы получили название А-диск, а светлые участки именуются I-диск. Актиновые нити крепятся к так называемой Z-линии, которая расположена в центре I-диска. Сегмент миофибриллы между Z-линииями, включающий миозиновый А-диск называется саркомером, который можно считать некой сократительной единицей миофибриллы.

Саркомер сокращается следующим образом: при помощи боковых ответвлений (мостиков) толстые нити миозина втягивают вдоль себя тонкие нити актина.

То есть головки мостиков входят в зацепление с актиновой нитью и втягивают ее между нитями миозина. По окончанию движения головки отсоединяются и входят в новое зацепление, продолжая втягивание. Получается, что сокращение мышц – совокупность сокращений множества саркомеров.

Если рассмотреть отдельно тонкую нить актина, то она представляет собой двойную спираль актиновых нитей, между которыми расположена двойная цепь тропомиозина.

Тропомиозин – это также белок, который блокирует зацепления миозиновых мостиков с актином в расслабленном состоянии мышцы. Как только нервный импульс через мотонейрон подается в мышцу, происходит смена полярности заряда мембраны мышечной клетки, в результате чего саркоплазма клетки насыщается ионами кальция (Ca++), которые высвобождаются из специальных хранилищ, находящихся вдоль каждой миофибриллы. Тропомиозиновая нить, в присутствии ионов кальция, мгновенно углубляется между актиновыми нитями, и мостики миозина получают возможность зацепления с актином – сокращение мышц становится возможным.

Однако после поступления Са++ в клетку, он тут же возвращается в свои хранилища и происходит расслабление мышцы. Только при постоянных импульсах, исходящих от нервной системы, мы можем поддерживать длительное сокращение – это состояние получило определение тетаническое сокращение мышц.

Разумеется, сокращение мышц требует энергии. А откуда же она берется, как формируется энергия, поддерживающая движение миозинового мостика? Об этом Вы узнаете в следующей статье Энергетические процессы в мышечной клетке. Энергия сокращения мышц.

Материалы данной статьи охраняются законом о защите авторских прав. Копирование без указания ссылки на первоисточник и уведомления автора ЗАПРЕЩЕНО!

источник

Механизм мышечного сокращения

Содержание

Нервно-мышечная реакция на силовую тренировку [ править | править код ]

Источник: «Программы тренировок», научное изд.
Автор: профессор, доктор наук Тудор Бомпа, 2016 г.

Структура мышц [ править | править код ]

Мышца — это комплексная структура, отвечающая за движение. Мышцы состоят из саркомеров, которые содержат определенное сочетание фибриллярных белков — миозина (толстые нити) и актина (тонкие нити), которые играют важную роль в мышечных сокращениях. Таким образом, саркомер — это сократительный элемент мышечного волокна, состоящий из миозиновых и актиновых белковых нитей.

Помимо этого, способность мышцы сокращаться и прилагать силу зависит конкретно от ее вида, площади поперечного сечения, а также длины и количества волокон внутри мышцы. Число волокон определяется генетикой, и на него невозможно повлиять с помощью тренировок; однако тренировки в состоянии изменить другие переменные. Например, число и толщина миозиновых нитей увеличивается посредством упорных тренировок с максимальной силовой нагрузкой. Увеличение толщины мышечных нитей увеличивает размер мышцы и силу сокращений.

Человеческое тело состоит из различных типов мышечных волокон, подразделяющихся на группы, и каждая группа относится к одной двигательной единице. В общем и целом в нашем организме имеются тысячи двигательных единиц, в которых находятся десятки тысяч мышечных волокон. Каждая двигательная единица содержит сотни или тысячи мышечных волокон, пребывающих в покое до тех пор, пока им не нужно действовать. Двигательная единица управляет совокупностью волокон и направляет их действия по закону «все или ничего». Этот закон означает, что при раздражении двигательной единицы импульс, направляемый в ее мышечные волокна, либо распространяется полностью — таким образом раздражая всю совокупность волокон, — либо не распространяется вообще.

Разные двигательные единицы реагируют на разные нагрузки при тренировках. Например, выполнение жима лежа с 60% повторного максимума задействует определенную совокупность двигательных единиц, тогда как более крупные двигательные единицы ожидают более высокой нагрузки. Поскольку последовательное задействование двигательных единиц зависит от нагрузки, необходимо разрабатывать специальные программы, чтобы активизировать и адаптировать основные группы двигательных единиц и мышечных волокон, играющих доминирующую роль в избранном виде спорта. К примеру, в тренировках для спринта на короткую дистанцию и легкоатлетических дисциплин (таких как толкание ядра) следует использовать тяжелые нагрузки, чтобы способствовать развитию силы, необходимой для оптимизации скорости и взрывных действий.

Советуем прочитать:  Боль в мышцах грудины что делать

Мышечные волокна выполняют разные биохимические (метаболические) функции; выражаясь конкретнее, одни лучше приспособлены с физиологической точки зрения к работе в анаэробных условиях, а другие лучше работают в аэробных условиях. Волокна, которые используют кислород для выработки энергии, называются аэробными, тип I, красными или медленными. Волокна, которым кислород не требуется, называются анаэробными, тип II, белыми или быстрыми. Быстрые мышечные волокна, в свою очередь, делятся на подтипы IIА и IIХ (иногда называемые IIВ, хотя у людей тип IIВ практически не встречается [1] ).

Медленные и быстрые волокна существуют примерно в равной пропорции. Однако в зависимости от их функций, в некоторых группах мышц (например, подколенные сухожилия, бицепсы) содержится больше быстрых волокон, тогда как в других (например, в камбаловидной мышце) содержится больше медленных волокон. В таблице 2.1 мы сравниваем характеристики быстрых и медленных волокон.

Сравнение быстрых и медленных волокон

• Нервная клетка меньше — иннервирует от 10 до 180 мышечных волокон

• Развивают долгие, продолжительные сокращения

• Применяются для развития выносливости

• Активизируются во время низко- и высокоинтенсивной деятельности

• Большая нервная клетка — иннервирует

от 300 до 500 (или более) мышечных волокон

• Развивают короткие, сильные сокращения

• Применяются для развития скорости и силы

• Активизируются только во время высокоинтенсивной деятельности

Тренировки могут влиять на эти характеристики. Датские ученые Андерсен и Аагаард [2] [3] [4] [5] [6] в своих исследованиях показывают, что при объемных нагрузках или лактатных по природе тренировках волокна IIХ приобретают характеристики волокон IIА. То есть богатая миозином цепочка этих волокон становится более медленной и более эффективно справляется с лактатной деятельностью. Эти изменения можно повернуть вспять, снижая тренировочную нагрузку (тейперинг), в результате чего волокна IIХ возвращаются к изначальным характеристикам наиболее быстрых волокон [3] . Силовые тренировки также увеличивают размер волокон, благодаря чему вырабатывается больше силы.

Сокращение быстрой двигательной единицы более быстрое и мощное, чем сокращение медленной двигательной единицы. В результате пропорция быстрых волокон, как правило, выше в организме успешных спортсменов, занимающихся скоростно-силовыми видами спорта, но они также быстрее утомляются. Спортсмены с более высоким скоплением медленных волокон, напротив, обычно преуспевают в видах спорта на выносливость, поскольку они могут выполнять нагрузки низкой интенсивности в течение более продолжительного времени.

Активизация мышечных волокон происходит по принципу величины, известному также как принцип Хеннемана [7] , согласно которому двигательные единицы и мышечные волокна активизируются начиная с меньшей в сторону большей. Активация всегда начинается с медленных волокон. При низкой или умеренно интенсивной нагрузке активируются медленные волокна и выполняют большую часть работы. При сильной нагрузке сначала сокращаются медленные волокна, затем в процесс вовлекаются быстрые волокна. При повторениях до отказа с умеренной нагрузкой двигательные единицы, состоящие из быстрых волокон, постепенно активизируются, чтобы поддерживать выработку силы, тогда как ранее задействованные двигательные единицы утомляются (см. рис. 1).

В распределении типов мышечных волокон у спортсменов, занимающихся разными видами спорта, могут наблюдаться различия. Это иллюстрируют рис. 2 и 2.3, представляющие общий процент содержания быстрых и медленных мышечных волокон у спортсменов в избранных видах спорта. Например, существенная разница между спринтерами и марафонцами четко дает понять, что успех в некоторых видах спорта хотя бы частично определяется генетическим составом мышечных волокон спортсмена.

Следовательно, пиковая мощность, вырабатываемая спортсменами, также имеет отношение к распределению типов волокон — чем выше процент быстрых волокон, тем большую мощность развивает спортсмен. Процент быстрых волокон также имеет отношение к скорости: чем выше скорость спортсмена, тем выше процент имеющихся у него быстрых волокон. Из таких людей получаются превосходные спринтеры и прыгуны, а подобный природный талант следует направлять в русло скоростно-силовых видов спорта. Попытка тренировать их, скажем, для бега на дистанцию означает трату таланта; в таких дисциплинах их ждет лишь средний успех, тогда как из них могут выйти отличные спринтеры, бейсболисты или футболисты (на этом список скоростносиловых видов спорта не кончается).

Механизм мышечных сокращений [ править | править код ]

Как мы описывали раньше, мышечные сокращения происходят в результате цепочки событий с участием белковых нитей — миозина и актина. В миозиновых нитях содержатся поперечные мостики — крошечные перемычки, выступающие вбок по направлению к актиновым нитям. Возбуждение, приводящее к сокращениям, стимулирует все волокно, создавая химические изменения, позволяющие актиновым нитям соединяться с миозиновыми поперечными мостиками. Связывание миозина с актином посредством поперечных мостиков высвобождает энергию, из-за чего поперечные мостики поворачиваются, таким образом подтягивая или совершая скользящее движение, связывающее миозиновые нити с актиновыми. Это скользящее движение вызывает мышечное сокращение, которое вырабатывает силу.

Чтобы визуализировать это иначе, вообразите гребную лодку. Весла представляют собой миозиновые нити, а воды — актиновые. Когда весла ударяются о воду, лодка с силой тянется вперед — и чем больше в воде весел, чем выше физическая сила гребца, тем больше вырабатываемая сила. Увеличение количества и толщины миозиновых нитей таким же образом повышает выработку силы.

Описанная ранее теория скользящих нитей дает понять, как работают мышцы, чтобы выработать силу. Эта теория включает в себя механизмы, способствующие эффективным мышечным сокращениям. Например, освобождение запаса эластичной энергии и рефлекторная адаптация играют ключевую роль в оптимизации спортивной работоспособности, но подобная адаптация происходит только тогда, когда в процессе тренировки происходит правильная стимуляция. Например, способность спортсмена использовать запас энергии для того, чтобы прыгать выше или толкать ядро дальше, оптимизируется посредством взрывных движений, как те, которые используются в плиометрическом тренинге. Однако мышечные компоненты — как, например, эластичные компоненты (сюда входят сухожилия, мышечные волокна и поперечные мостики) — не могут осуществлять эффективную транспортировку энергии, если спортсмен не укрепляет параллельные эластичные компоненты (напр., связки) и коллагеновые структуры (обеспечивающие стабильность и предохраняющие от травм). Если телу нужно выдерживать силы и воздействия, которым спортсмен подвергается, чтобы оптимизировать эластичные качества мышц, анатомическая адаптация должна предшествовать силовому тренингу.

Рефлекс — это непроизвольное мышечное сокращение, вызванное внешним стимулом [8] . Два основных компонента контроля рефлексов — это мышечные веретена и нервносухожильное веретено. Мышечные веретена реагируют на величину и скорость мышечного растяжения [9] , тогда как нервно-сухожильное веретено (которое находится в местах соединения мышечных волокон с сухожильными пучками [8] ) реагирует на мышечное напряжение. Когда в мышцах развивается высокая степень напряжения или растяжения, мышечные веретена и нервно-сухожильное веретено непроизвольно расслабляют мышцу, чтобы защитить ее от повреждения и травмы.

При пресечении этих ингибиторных реакций повышается спортивная работоспособность. Единственный способ добиться этого — адаптировать организм к более высокой степени напряжения, что повышает порог активизации рефлексов. Этой адаптации можно добиться посредством силового тренинга с использованием постепенно утяжеляющейся нагрузки (до 90 процентов повторного максимума или даже выше), таким образом вынуждая нервно-мышечную систему выдерживать более высокое напряжение, постоянно задействуя большее число быстрых волокон. В быстрых волокнах вырабатывается больше белка, что способствует увеличению силы.

Все спортивные движения выполняются по двигательной модели, которая называется циклом растяжение — сокращение и характеризуется тремя основными типами сокращения: эксцентрическим (удлинение), изометрическим (статичное положение) и концентрическим (сокращение). Например, волейболист, который быстро приседает и сразу подпрыгивает, чтобы блокировать атакующий удар, выполнил весь цикл растяжение — сокращение. То же касается и спортсмена, который опускает штангу на грудь и быстро выполняет взрывное движение, вытягивая руки. Чтобы полноценно пользоваться физиологическими качествами цикла растяжение — сокращение, мышца должна быстро переходить от удлинения к сокращению [10] (Schmidtble-icher, 1992).

Мышечный потенциал оптимизируется, когда активизируются все сложные факторы, влияющие на цикл растяжение — сокращение. Их влияние можно использовать для улучшения спортивных показателей только тогда, когда нервно-мышечная система стратегически стимулируется в правильной последовательности. Именно для достижения этой цели периодизация тренировки силы основывает планирование этапов на физиологической базе выбранного вида спорта. После составления эргогенного профиля (оценки вклада энергетических систем) выбранного вида спорта нужно пошагово распланировать этапы тренировки, чтобы перенести положительную нервно-мышечную адаптацию на практические показатели деятельности человека. Таким образом, понимание прикладной человеческой физиологии и установление цели в конце каждого этапа помогают тренерам и спортсменам интегрировать физиологические принципы в конкретную спортивную тренировку.

Советуем прочитать:  Что можно сделать чтоб не болели мышцы

Повторим: скелетно-мышечная система тела — это сочетание костей, прикрепляемых друг к другу с помощью связок в области суставов. Пересекающие эти суставы мышцы дают силу для движения тела. Однако скелетные мышцы не сокращаются независимо друг от друга. Движения, выполняемые вокруг сустава, производятся несколькими мышцами, каждая из которых выполняет определенную роль, как уже было упомянуто выше.

Агонисты — или синергисты — это мышцы, которые взаимодействуют друг с другом при выполнении движения. В большинстве случаев, особенно если речь идет об умелом и опытном спортсмене, мышцы-антагонисты расслабляются, облегчая движение. Поскольку взаимодействие мышц группы агонистов и антагонистов напрямую влияет на спортивные движения, неправильное взаимодействие между этими группами может привести к порывистому или скованному движению. Следовательно, гладкость мышечного сокращения можно улучшить, если сосредоточиться на расслаблении антагонистов.

По этой причине одновременное сокращение (одновременная активизация мышц-агонистов и антагонистов, чтобы стабилизировать сустав) рекомендуется только на ранних стадиях реабилитации после травмы. Здоровому же спортсмену, особенно если он занимается силовыми видами спорта, не нужно выполнять упражнения (например, на нестабильной поверхности), вызывающие одновременные сокращения. К примеру, одной из основных характеристик элитных спринтеров является очень низкая миоэлектрическая активность мышц-антагонистов в каждой фазе цикла шага [11] .

Первичные мышцы в первую очередь отвечают за суставное действие, которое является частью объемного силового движения или технической способности. Например, во время флексии локтя (сгибание бицепса) первичной мышцей является двуглавая мышца, тогда как трехглавая мышца (трицепс) выступает в роли антагониста и должна быть расслаблена, чтобы обеспечить беспрепятственное действие. В дополнение к этому стабилизаторы, или фиксаторы (обычно это меньшие мышцы), сокращаются изометрически, чтобы закрепить кость так, чтобы у первичных мышц была прочная база, откуда начинать натяжение. Мышцы других конечностей также могут принимать в этом участие, выступая в роли стабилизаторов, позволяющих первичным мышцам выполнять необходимые движения. Например, когда дзюдоист тянет соперника на себя, удерживая его за дзюдоги, мышцы его спины, ног и живота сокращаются изометрически, чтобы обеспечить стабильное основание для действия локтевых сгибателей (бицепсов), плечевых разгибателей (задние дельты) и лопаточных аддукторов и депрессоров (трапециевидная мышца и широчайшая мышца спины).

Механика мышечных сокращений [ править | править код ]

Если мышцу стимулировать коротким электрическим импульсом, спустя небольшой латентный период происходит ее сокращение. Такое сокращение называется «одиночное сокращение мышцы». Одиночное мышечное сокращение длится около 10-50 мс, причем оно достигает максимальной силы через 5-30 мс.

Каждое отдельное мышечное волокно подчиняется закону «все или ничего», т. е. при силе раздражения выше порогового уровня происходит полное сокращение с максимальной для данного волокна силой, а ступенчатое повышение силы сокращения по мере увеличения силы раздражения невозможно. Поскольку смешанная мышца состоит из множества волокон с различным уровнем чувствительности к возбуждению, сокращение всей мышцы может быть ступенчатым в зависимости от силы раздражения, при этом при сильных раздражениях происходит активация глубжележащих мышечных волокон.

Механизм скольжения филаментов [ править | править код ]

Укорочение мышцы происходит за счет укорочения образующих ее саркомеров, которые, в свою очередь, укорачиваются за счет скольжения относительно друг друга актиновых и миозиновых филаментов (а не укорочения самих белков). Теория скольжения филаментов была предложена учеными Huxley и Hanson (Huxley, 1974; рис. 1). (В 1954 г. две группы исследователей — X. Хаксли с Дж. Хэнсон и А. Хаксли с Р. Нидергерке — сформулировали теорию, объясняющую мышечное сокращение скольжением нитей. Независимо друг от друга они обнаружили, что длина диска А оставалась постоянной в расслабленном и укороченном саркомере. Это позволило предположить, что есть два набора нитей — актиновые и миозиновые, причем одни входят в промежутки между другими, и при изменении длины саркомера эти нити каким-то образом скользят друг по другу. Сейчас эта гипотеза принята почти всеми.)

Актин и миозин — два сократительных белка, которые способны вступать в химическое взаимодействие, приводящее к изменению их взаимного расположения в мышечной клетке. При этом цепочка миозина прикрепляется к актиновой нити с помощью целого ряда особых «головок», каждая из которых сидит на длинной пружинистой «шее». Когда происходит сцепление между миозиновой головкой и актиновой нитью, конформация комплекса этих двух белков изменяется, миозиновые цепочки продвигаются между актиновыми нитями и мышца в целом укорачивается (сокращается). Однако, чтобы химическая связь между головкой миозина и активной нитью образовалась, необходимо подготовить этот процесс, поскольку в спокойном (расслабленном) состоянии мышцы активные зоны белка актина заняты другим белком — тропохмиозином, который не позволяет актину вступить во взаимодействие с миозином. Именно для того, чтобы убрать тропомиозиновый «чехол» с актиновой нити, требуется быстрое выливание ионов кальция из цистерн саркоплазматического ретикулума, что происходит в результате прохождения через мембрану мышечной клетки потенциала действия. Кальций изменяет конформацию молекулы тропомиозина, в результате чего активные зоны молекулы актина открываются для присоединения головок миозина. Само это присоединение осуществляется с помощью так называемых водородных мостиков, которые очень прочно связывают две белковые молекулы — актин и миозин — и способны в таком связанном виде находиться очень долго.

Для отсоединения миозиновой головки от актина необходимо затратить энергию аденозинтрифосфа-та (АТФ), при этом миозин выступает в роли АТФазы (фермента, расщепляющего АТФ). Расщепление АТФ на аденозиндифосфат (АДФ) и неорганический фосфат (Ф) высвобождает энергию, разрушает связь между актином и миозином и возвращает головку миозина в исходное положение. В дальнейшем между актином и миозином могут снова образовываться поперечные связи.

При отсутствии АТФ актин-миозиновые связи не разрушаются. Это и является причиной трупного окоченения (rigor mortis) после смерти, т. к. останавливается выработка АТФ в организме — АТФ предотвращает мышечную ригидность.

Даже при мышечных сокращениях без видимого укорочения (изометрические сокращения, см. выше) активируется цикл формирования поперечных связей, мышца потребляет АТФ и выделяет тепло. Головка миозина многократно присоединяется на одно и то же место связывания актина, и вся система миофиламентов остается неподвижной.

Внимание: Сократительные элементы мышц актин и миозин сами по себе не способны к укорочению. Мышечное укорочение является следствием взаимного скольжения миофиламентов относительно друг друга (механизм скольжения филаментов).

Как же образование поперечных связей (водородных мостиков) переходит в движение? Одиночный саркомер за один цикл укорачивается приблизительно на 5-10 нм, т.е. примерно на 1 % своей общей длины. За счет быстрого повторения цикла поперечных связей возможно укорочение на 0,4 мкм, или 20% своей длины. Поскольку каждая миофибрилла состоит из множества саркомеров и во всех них одновременно (но не синхронно) образуются поперечные связи, суммарно их работа приводит к видимому укорочению всей мышцы. Передача силы этого укорочения происходит через Z-линии миофибрилл, а также концы сухожилий, прикрепленных к костям, в результате чего и возникает движение в суставах, через которые мышцы реализуют перемещение в пространстве частей тела или продвижение всего тела.

Связь между длиной саркомера и силой мышечных сокращений [ править | править код ]

Наибольшую силу сокращений мышечные волокна развивают при длине 2-2,2 мкм. При сильном растяжении или укорочении саркомеров сила сокращений снижается (рис. 2). Эту зависимость можно объяснить механизмом скольжения филаментов: при указанной длине саркомеров наложение миозиновых и актиновых волокон оптимально; при большем укорочении миофиламенты перекрываются слишком сильно, а при растяжении наложение миофиламентов недостаточно для развития достаточной силы сокращений.

Скорость укорочения мышечных волокон [ править | править код ]

Скорость укорочения мышцы зависит от нагрузки на эту мышцу (закон Хилла, рис. 3). Она максимальна без нагрузки, а при максимальной нагрузке практически равна нулю, что соответствует изометрическому сокращению, при котором мышца развивает силу, не изменяя своей длины.

Влияние растяжения на силу сокращений: кривая растяжения в покое [ править | править код ]

Важным фактором, влияющим на силу сокращений, является величина растяжения мышцы. Тяга за конец мышцы и натяжение мышечных волокон называются пассивным растяжением. Мышца обладает эластическими свойствами, однако в отличие от стальной пружины зависимость напряжения от растяжения не линейна, а образует дугообразную кривую. С увеличением растяжения повышается и напряжение мышцы, но до определенного максимума. Кривая, описывающая эти взаимоотношения, называется кривой растяжения в покое.

Данный физиологический механизм объясняется эластическими элементами мышцы — эластичностью сарколеммы и соединительной ткани, располагающимися параллельно сократительным мышечным волокнам.

Также при растяжении изменяется и наложение друг на друга миофиламентов, однако это не оказывает влияния на кривую растяжения, т. к. в покое не образуются поперечные связи между актином и миозином. Предварительное растяжение (пассивное растяжение) суммируется с силой изометрических сокращений (активная сила сокращений).

источник