Меню

У кого в дыхании участвуют межреберные мышцы

Дыхательные мышцы

Изменения объёма грудной клетки осуществляются за счёт сокращений дыхательных мышц. Инспираторные мышцы (мышцы, обеспечивающие вдох) увеличивают объём грудной клетки, экспираторные — уменьшают. Кинспираторным мышцам относятся: диафрагма, наружные косые межрёберные и межхрящевые мышцы. Поднятие ребер при вдохе обусловлено, в основном, сокращением наружных межреберных мышц. Внутренние межреберные мышцы участвуют в акте выдоха. При спокойном дыхании купол диафрагмы перемещается на 1,5 см, в акте дыхания участвуют межрёберные мышцы верхних 3-5 межрёберных промежутков. При очень глубоком дыхании в акте вдоха принимают участие вспомогательные дыхательные мышцы: лестничная, большая и малая грудные, передняя зубчатая. При затруднённом дыхании включаются дополнительные мышцы: разгибающие позвоночник и мышцы, обеспечивающие увеличение объема грудной клетки при фиксации верхних конечностей опорой на руки: трапецивидная, ромбовидные и мышца, поднимающая лопатку. При активном глубоком выдохе сокращаются мышцы брюшной стенки (косые, поперечная и прямая).

Механика дыхания

Под этим термином понимается соотношение между давлением и объемом, или давлением и расходом воздуха во время дыхательного цикла.

Поступление воздуха в альвеолы обусловлено разностью давле­ний между атмосферой и альвеолами, которая возникает в результате увеличения объема грудной клетки, плевральной полости и соответственно — альвеол. В результате сокращения межрёберных мышц (поднимают рёбра, что увеличивает передне-задний и боковой размеры грудной полости) и диафрагмы (купол её опускается, увеличивается вертикальный размер) объём грудной полости увеличивается, давление в герметичной плевральной полости становится более отрицательным, лёгкие растягиваются, в альвеолах снижается давление до -6 мм.рт.ст. по отношению к атмосферному. Создаётся разность давления между атмосферой и альвеолами, атмосферный воздух поступает по градиенту давления в альвеолы.

Дыхательные мышцы расслабляются, под действием эластической тяги лёгких, силы тяжести грудной клетки объём её уменьшается, внутриплевральное давление становится менее отрицательным, объём легких уменьшается, давление в альвеолах становится выше атмосферного, и воздух из альвеол и дыхательных путей удаляется в атмосферу. Вдох происходит активно, а спокойный выдох — пассивно.

Значение отрицательного внутриплеврального

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома — страшная бессонница, которая потом кажется страшным сном. 8871 — | 7203 — или читать все.

85.95.179.227 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Биомеханика дыхания. Биомеханика вдоха

Рис. 10.1. Влияние сокращения диафрагмальной мышцы на объем грудной полости. Сокращение диафрагмальной мышцы при вдохе (пунктирная линия) вызывает опускание диафрагмы вниз, смещение органов брюшной полости вниз и вперед. В результате увеличивается объем грудной полости.

Увеличение объема грудной полости при вдохе происходит в результате сокращения инспираторных мышц: диафрагмы и наружных межреберных. Основной дыхательной мышцей является диафрагма, которая находится в нижней трети грудной полости и разделяет грудную и брюшную полости. При сокращении диафрагмальной мышцы диафрагма движется вниз и смещает органы брюшной полости вниз и кпереди, увеличивая объем грудной полости преимущественно по вертикали (рис. 10.1).

Увеличению объема грудной полости при вдохе способствует сокращение наружных межреберных мышц, которые поднимают грудную клетку вверх, увеличивая объем грудной полости. Этот эффект сокращения наружных межреберных мышц обусловлен особенностями прикрепления мышечных волокон к ребрам — волокна идут сверху вниз и сзади кпереди (рис. 10.2). При подобном направлении мышечных волокон наружных межреберных мышц их сокращение поворачивает каждое ребро вокруг оси, проходящей через точки сочленения головки ребра с телом и поперечным отростком позвонка. В результате этого движения каждая нижележащая реберная дуга поднимается вверх больше, чем опускается вышерасположенная. Одновременное движение вверх всех реберных дуг приводит к тому, что грудина поднимается вверх и кпереди, а объем грудной клетки увеличивается в сагиттальной и фронтальной плоскостях. Сокращение наружных межреберных мышц не только увеличивает объем грудной полости, но и препятствует опусканию грудной клетки вниз. Например, у детей, имеющих неразвитые межреберные мышцы, грудная клетка уменьшается в размере во время сокращения диафрагмы (парадоксальное движение).

Рис. 10.2. Направление волокон наружных межреберных мышц и увеличение объема грудной полости при вдохе. а — сокращение наружных межреберных мышц при вдохе поднимает нижнее ребро больше, чем опускает вниз верхнее. В результате реберные дуги поднимаются вверх и увеличивают (б) объем грудной полости в сагиттальной и фронтальной плоскости.

При глубоком дыхании в биомеханизме вдоха, как правило, участвует вспомогательная дыхательная мускулатура — грудино-ключично-сосцевидные и передние лестничные мышцы, и их сокращение дополнительно увеличивает объем грудной клетки. В частности, лестничные мышцы поднимают верхние два ребра, а грудино-ключично-сосцевидные — поднимают грудину. Вдох является активным процессом и требует расхода энергии при сокращении инспираторных мышц, которая затрачивается на преодоление эластического сопротивления относительно ригидных тканей грудной клетки, эластического сопротивления легко растяжимой легочной ткани, аэродинамического сопротивления дыхательных путей потоку воздуха, а также на повышение внутриабдоминального давления и возникающего при этом смещения органов брюшной полости книзу.

Выдох в покое у человека осуществляется пассивно под действием эластической тяги легких, которая возвращает объем легких к исходной величине. Тем не менее при глубоком дыхании, а также при кашле и чиханье, выдох может быть активным, и уменьшение объема грудной полости происходит за счет сокращения внутренних межреберных мышц и мышц живота. Мышечные волокна внутренних межреберных мышц идут относительно точек их прикрепления к ребрам снизу вверх и сзади кпереди. При их сокращении ребра поворачиваются вокруг оси, проходящей через точки их сочленения с позвонком, и каждая вышерасположенная реберная дуга опускается вниз больше, чем нижерасположенная поднимается вверх. В результате все реберные дуги вместе с грудиной опускаются вниз, уменьшая объем грудной полости в сагиттальной и фронтальной плоскостях.

При глубоком дыхании человека сокращение мышц живота в фазу выдоха увеличивает давление в брюшной полости, что способствует смещению купола диафрагмы вверх и уменьшает объем грудной полости в вертикальном направлении.

Сокращение дыхательных мышц грудной клетки и диафрагмы при вдохе вызывает увеличение объема легких, а при их расслаблении во время выдоха легкие спадаются до исходного объема. Объем легких как при вдохе, так и при выдохе изменяется пассивно, поскольку благодаря своей высокой эластичности и растяжимости легкие следуют за изменениями объема грудной полости, вызванными сокращением дыхательных мышц. Это положение иллюстрирует следующая модель пассивного увеличения объема легких (рис. 10.3). В этой модели легкие могут быть рассмотрены в качестве эластичного баллона, помещенного внутрь емкости, выполненной из ригидных стенок и гибкой диафрагмы. Пространство между эластичным баллоном и стенками емкости является герметичным. Эта модель позволяет изменять давление внутри емкости при движении вниз гибкой диафрагмы. При увеличении объема емкости, вызванном движением вниз гибкой диафрагмы, давление внутри емкости, т. е. вне баллона, становится ниже атмосферного в соответствии с законом идеального газа. Баллон раздувается, поскольку давление внутри него (атмосферное) становится выше, чем давление в емкости вокруг баллона.

Рис. 10.3. Схема модели, демонстрирующей пассивное раздувание легких при опускании диафрагмы. При опускании вниз диафрагмы давление воздуха внутри емкости становится ниже атмосферного давления, что вызывает раздувание эластичного баллона. Р — атмосферное давление.

В приложении к легким человека, которые полностью заполняют объем грудной полости, их поверхность и внутренняя поверхность грудной полости покрыты плевральной мембраной. Плевральная мембрана поверхности легких (висцеральная плевра) физически не соприкасается с плевральной мембраной, покрывающей грудную стенку (париетальная плевра), так как между этими мембранами имеется плевральное пространство (синоним — внутриплевральное пространство), заполненное тонким слоем жидкости — плевральной жидкости. Эта жидкость увлажняет поверхность долей легких и способствует их скольжению относительно друг друга во время раздувания легких, а также облегчает трение между париетальным и висцеральным листками плевры. Жидкость несжимаема и ее объем не увеличивается при уменьшении давления в плевральной полости. Поэтому высокоэластичные легкие в точности повторяют изменение объема грудной полости во время вдоха. Бронхи, кровеносные сосуды, нервы и лимфатические сосуды формируют корень легкого, с помощью которого легкие фиксированы в области средостения. Механические свойства этих тканей обусловливают основную степень усилия, которое должны развивать дыхательные мышцы при сокращении, чтобы вызывать увеличение объема легких. В обычных условиях эластическая тяга легких создает незначительную величину отрицательного давления в тонком слое жидкости внутриплеврального пространства относительно атмосферного давления. Отрицательное внутриплевральное давление варьирует в соответствии с фазами дыхательного цикла от -5 (выдох) до -10 см водн. ст. (вдох) ниже атмосферного давления (рис. 10.4). Отрицательное внутриплевральное давление способно вызвать уменьшение (коллапс) объема грудной полости, которому ткани грудной клетки противодействуют своей чрезвычайно ригидной структурой. Диафрагма по сравнению с грудной клеткой, является более эластичной, и ее купол поднимается вверх под влиянием градиента давления, существующего между плевральной и брюшной полостями.

Советуем прочитать:  Защемило мышцу в спине справа

В состоянии, когда легкие не расширяются и не спадаются (пауза соответственно после вдоха или выдоха), в дыхательных путях отсутствует поток воздуха и давление в альвеолах равно атмосферному. В этом случае градиент между атмосферным и внутриплевральным давлением будет точно уравновешивать давление, развиваемое эластической тягой легких (см. рис. 10.4). В этих условиях величина внутриплеврального давления равна разности между давлением в дыхательных путях и давлением, развиваемым эластической тягой легких. Поэтому чем больше растянуты легкие, тем сильнее будет эластическая тяга легких и более отрицательным относительно атмосферного является величина внутриплеврального давления. Так происходит во время вдоха, когда диафрагма опускается вниз и эластическая тяга легких противодействует раздуванию легких, а величина внутриплеврального давления становится более отрицательной. При вдохе это отрицательное давление способствует продвижению воздуха по дыхательным путям в сторону альвеол, преодолевая сопротивление дыхательных путей. В результате воздух поступает из внешней среды в альвеолы.

Рис. 10.4. Давление в альвеолах и внутриплевральное давление в фазу вдоха и выдоха дыхательного цикла. В отсутствии потока воздуха в дыхательных путях давление в них равно атмосферному (А), а эластическая тяга легких создает в альвеолах давление Е. В этих условиях величина внутри-плеврального давления равна разнице А — Е. При вдохе сокращение диафрагмы увеличивает величину отрицательного давления в плевральной полости до —10 см водн. ст., которое способствует преодолению сопротивления потоку воздуха в дыхательных путях, и воздух движется из внешней среды в альвеолы. Величина внутриплеврального давления обусловлена разницей между давлениями А — R — Е. При выдохе диафрагма расслабляется и внутриплевральное давление становится менее отрицательным относительно атмосферного давления (—5 см водн. ст.). Альвеолы вследствие своей эластичности уменьшают свой диаметр, в них повышается давление Е. Градиент давлений между альвеолами и внешней средой сопособствует выведению воздуха из альвеол по дыхательным путям во внешнюю среду. Величина внутриплеврального давленния обусловлена суммой A+R за вычетом давления внутри альвеол, т. е. А + R — Е. А — атмосферное давление, Е —давление в альвеолах, возникающее вследствие эластической тяги легких, R —давление, обеспечивающее преодоление сопротивления потоку воздуха в дыхательных путях, Р — внутриплевральное давление.

При выдохе диафрагма расслабляется и величина внутриплеврального давления становится менее отрицательной. В этих условиях альвеолы в связи с высокой эластичностью их стенок начинают уменьшаться в размере и выталкивают воздух из легких через дыхательные пути. Сопротивление дыхательных путей потоку воздуха поддерживает положительное давление в альвеолах и препятствует их быстрому спадению. Таким образом, в спокойном состоянии при выдохе поток воздуха в дыхательных путях обусловлен только эластической тягой легких.

Пневмоторакс. Если воздух входит во внутриплевральное пространство, например через раневое отверстие, в легких возникает коллапс, грудная клетка незначительно увеличивается в объеме, а диафрагма опускается вниз, как только внутриплевральное давление становится равным атмосферному давлению. Это состояние называется пневмотораксом, при котором легкие утрачивают способность следовать за изменением объема грудной полости во время дыхательных движений. Более того, во время вдоха воздух через раневое отверстие входит в грудную полость и выходит во время выдоха без изменения объема легких во время дыхательных движений, что делает невозможным газообмен между внешней средой и организмом.

Процесс внешнего дыхания обусловлен изменением объема воздуха в легких в течение фаз вдоха и выдоха дыхательного цикла. При спокойном дыхании соотношение длительности вдоха к выдоху в дыхательном цикле равняется в среднем 1:1,3. Внешнее дыхание человека характеризуется частотой и глубиной дыхательных движений. Частота дыхания человека измеряется количеством дыхательных циклов в течение 1 мин и ее величина в покое у взрослого человека варьирует от 12 до 20 в 1 мин. Этот показатель внешнего дыхания возрастает при физической работе, повышении температуры окружающей среды, а также изменяется с возрастом. Например, у новорожденных частота дыхания равна 60—70 в 1 мин, а у людей в возрасте 25—30 лет — в среднем 16 в 1 мин. Глубина дыхания определяется по объему вдыхаемого и выдыхаемого воздуха в течение одного дыхательного цикла. Произведение частоты дыхательных движений на их глубину характеризует основную величину внешнего дыхания — вентиляцию легких. Количественной мерой вентиляции легких является минутный объем дыхания — это объем воздуха, который человек вдыхает и выдыхает за 1 мин. Величина минутного объема дыхания человека в покое варьирует в пределах 6—8 л. При физической работе у человека минутный объем дыхания может возрастать в 7—10 раз.

Рис. 10.5. Объемы и емкости воздуха в легких и кривая (спирограмма) изменения объема воздуха в легких при спокойном дыхании, глубоком вдохе и выдохе. ФОЕ — функциональная остаточная емкость.

Легочные объемы воздуха. В физиологии дыхания принята единая номенклатура легочных объемов у человека, которые заполняют легкие при спокойном и глубоком дыхании в фазу вдоха и выдоха дыхательного цикла (рис. 10.5). Легочный объем, который вдыхается или выдыхается человеком при спокойном дыхании, называется дыхательным объемом. Его величина при спокойном дыхании составляет в среднем 500 мл. Максимальное количество воздуха, которое может вдохнуть человек сверх дыхательного объема, называется резервным объемом вдоха (в среднем 3000 мл). Максимальное количество воздуха, которое может выдохнуть человек после спокойного выдоха, называется резервным объемом выдоха (в среднем 1100 мл). Наконец, количество воздуха, которое остается в легких после максимального выдоха, называется остаточным объемом, его величина равна примерно 1200 мл.

Сумма величин двух легочных объемов и более называется легочной емкостью. Объем воздуха в легких человека характеризуется инспираторной емкостью легких, жизненной емкостью легких и функциональной остаточной емкостью легких. Инспираторная емкость легких (3500 мл) представляет собой сумму дыхательного объема и резервного объема вдоха. Жизненная емкость легких (4600 мл) включает в себя дыхательный объем и резервные объемы вдоха и выдоха. Функциональная остаточная емкость легких (1600 мл) представляет собой сумму резервного объема выдоха и остаточного объема легких. Сумма жизненной емкости легких и остаточного объема называется общей емкостью легких, величина которой у человека в среднем равна 5700 мл.

При вдохе легкие человека за счет сокращения диафрагмы и наружных межреберных мышц начинают увеличивать свой объем с уровня функциональной остаточной емкости, и его величина при спокойном дыхании составляет дыхательный объем, а при глубоком дыхании — достигает различных величин резервного объема вдоха. При выдохе объем легких вновь возвращается к исходному уровню функциональной остаточной емкости пассивно, за счет эластической тяги легких. Если в объем выдыхаемого воздуха начинает входит воздух функциональной остаточной емкости, что имеет место при глубоком дыхании, а также при кашле или чиханье, то выдох осуществляться за счет сокращения мышц брюшной стенки. В этом случае величина внутриплеврального давления, как правило, становится выше атмосферного давления, что обусловливает наибольшую скорость потока воздуха в дыхательных путях.

Советуем прочитать:  Болит мышца от ягодицы до колена сзади

При вдохе увеличению объема грудной полости препятствуют эластическая тяга легких, движение ригидной грудной клетки, органы брюшной полости и, наконец, сопротивление дыхательных путей движению воздуха в направлении альвеол. Первый фактор, а именно эластическая тяга легких, в наибольшей степени препятствует увеличению объема легких во время инспирации.

Не нашли то, что искали? Воспользуйтесь поиском:

источник

При задержке дыхания мышцы вдоха и выдоха сокращаются одновременно, благодаря чему грудная клетка и диафрагма удерживаются в одном положении

Выдох начинается с того, что межреберные мышцы расслабляютсЯ. Под действием силы тяжести грудная стенка опускается вниз, а диафрагма поднимается вверх, поскольку растянутая стенка живота давит на внутренние органы брюшной полости, а они – на диафрагму. Объем грудной полости уменьшается, легкие сдавливаются, давление воздуха в альвеолах становится выше атмосферного, и часть его выходит наружу. Все это происходит при спокойном дыхании. При глубоком вдохе и выдохе включаются дополнительные мышцы.

Вдох заключается в том, что диафрагма опускается вниз, отодвигая органы брюшной полости, а межреберные мышцы поднимают грудную клетку вверх, вперед и в стороны. Объем грудной клетки увеличивается, и легкие следуют за этим увеличением, поскольку содержащиеся в легких газы прижимают их к пристеночной плевре. Вследствие этого давление внутри легочных альвеол падает и наружный воздух поступает в альвеолы.

Поскольку углекислый газ непрерывно поступает из крови в альвеолярный воздух, а кислород поглощается кровью и расходуется, для поддержания газового состава альвеол необходима вентиляция альвеолярного воздуха. Она достигается благодаря дыхательным движениям: чередованию вдоха и выдоха. Сами легкие не могут нагнетать или изгонять воздух из своих альвеол. Они лишь пассивно следуют за изменением объема грудной полости. Поскольку давление в плевральной полости, щелевидном пространстве между легкими и стенками грудной полости меньше, чем давление воздуха в легких, легкие всегда прижаты к стенкам грудной полости и точно следуют за изменением ее конфигурации. При вдохе и выдохе легочная плевра скользит по пристеночной плевре, повторяя ее форму.

Общая емкость легких – 4-5 литров. В состоянии покоя человек вдыхает и выдыхает примерно 450 миллилитров, кроме того, он может вдохнуть еще 1500 миллилитров и выдохнуть тоже 1500 миллилитров. В воздушных путях в легких, в мертвом пространстве остается остаточный объем. Жизненная емкость легких –это наибольшее количество воздуха, которое человек может выдохнуть после самого глубокого вдоха. Жизненная емкость легких зависит от возраста: у детей – 1,2 литра, у женщин – 3,5 литра, у мужчин – 5 литров, у спортсменов – 5,5 литра. Измеряется спирометром.

Каждое легкое одето оболочкой – легочной плеврой, которая состоит из соединительной ткани. Плевра выстилает грудную полость с внутренней стороны. Это пристеночная плевра. Между легочной и пристеночной плеврой – узкая щель. Она называется плевральной полостью и заполнена тончайшим слоем жидкости, которая облегчает скольжение легочной стенки во время вдоха и выдоха. В полости отрицательное давление.

Ацинус — структурная единица легкого. Состоит из однослойного эпителия, оплетен кровеносными капиллярами. В легких примерно 800.000 ацинусов и приблизительно 500.000.000 альвеол. Следовательно, площадь легких приблизительно 100 – 150 метров квадратных.

Легкие – парный орган. Правое состоит из 3-х долей. Левое – из 2-х. доли состоят из сегментов (по 10 в каждом легком). Разделение осуществляют соединительно тканные прокладки.

Легкие – занимают все свободное пространство грудной клетки. Расширенная часть легких прилегает к диафрагме. Главные бронхи, легочные артерии и вены проходят в легких с внутренней стороны, граничащей с сердцем. Место их входа называется «воротами легких».

Строение легких. Механизм дыхательных движений. Жизненная емкость легких. Значение дыхательной гимнастики. Газообмен в легких и тканях. Транспорт газов кровью.

У человека те же системы органов, что и у других млекопитающих: покровная, костно-мышечная, дыхательная, кровеносная, пищеварительная, выделительная, система органов размножения, нервная и эндокринная. Последние две системы обеспечивают согласованную работу всех органов. Нервная система осуществляет регуляцию с помощью электрохимических сигналов, нервных импульсов. Эндокринная система действует с помощью биологически активных веществ – гормонов, которые поступают в кровь и дойдя до органов, изменяют их работу. Нервная и эндокринная системы работают вместе и дополняют одна другую.

Признаки Вдох Выдох
Межреберные мышцы Сократились Расслабление
Диафрагма Сократилась Расслабление
Грудная клетка Приподнимается Опускается
Объем легких Увеличивается Уменьшается
движение воздуха Увеличивается в легких Уменьшается из легких
Давление Уменьшилось Увеличилось

Вывод: Грудную клетку приподнимают грудные мышцы. Причина движения воздуха – разница давления в атмосфере и легких. (Объем * Давление = const)

Нервная регуляция дыхания. Дыхательный центр расположен в продолговатом мозге. Он состоит из центров вдоха и выдоха, которые регулируют работу дыхательных мышц. Спадение легочных альвеол, которое происходит при выдохе, рефлекторно вызывает вдох, а расширение альвеол рефлекторно вызывает выдох.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома — страшная бессонница, которая потом кажется страшным сном. 8871 — | 7203 — или читать все.

85.95.179.227 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Биомеханика вдоха и выдоха

Дыхательные мышцы являются «двигателем» вентиляции. Спокойное и форсированное дыхание отличается по многим параметрам, в том числе по количеству дыхательных мышц, выполняющих дыхательные движения. Различают инспираторные (отвечающие за вдох) и экспираторные(отвечающие за выдох) мышцы. Также дыхательные мышцы разделяют на основныеи вспомогательные. К основным инспираторным мышцам относятся: а) диафрагма; б) наружные межреберные мышцы; в) внутренние межхрящевые мышцы.

Рис.4.Механизм дыхательных движений (изменение объема грудной клетки) за счет диафрагмы и мышц брюшного пресса (А) и сокращения наружных межреберных мышц (Б) (слева — модель движения ребер)

При спокойном дыхании 4/5 инспирации осуществляется диафрагмой. Сокращение мышечной части диафрагмы, передаваясь на сухожильный центр, приводит к уплощению ее купола и увеличению вертикальных размеров грудной полости. При спокойном дыхании купол диафрагмы опускается примерно на 2 см. В поднятии ребер участвуют внутренние межреберные и межхрящевые мышцы. Они проходят косо от ребра к ребру сзади и сверху, вперед и вниз (дорсокраниально и вентрокаудально). За счет их сокращения увеличиваются латеральный и сагггитальный размеры грудной клетки. При спокойном дыхании выдох происходит пассивно при помощи эластических возвратных сил (точно так же как растянутая пружина сама возвращается в исходное положение).

При форсированном дыхании к основным испираторным мышцам присоединяются вспомогательные: большие и малые грудные, лестничные, грудинно-ключично-сосцевидные, трапециевидные.

Рис.5. Важнейшие вспомогательные инспираторные мышцы (А) и вспомогательные экспираторные дыхательные мышцы (Б)

Для того чтобы эти мышцы могли участвовать в акте вдоха, необходимо, чтобы участки их прикрепления были зафиксированы. Типичным примером служит поведение больного с затрудненным дыханием. Такие больные упираются руками в неподвижный предмет, в результате чего плечи фиксируются и отклоняют голову назад.

Выдох при форсированном дыхании обеспечивается экспираторнымимышцами: основными – внутренними межреберными мышцами и вспомогательными — мышцами брюшной стенки (наружными и внутренними косыми, поперечными, прямыми).

В зависимости от того, связано ли расширение грудной клетки при нормальном дыхании преимущественно с поднятием ребер или уплощением диафрагмы, различают грудной (реберный) и брюшной типы дыхания.

Контрольные вопросы

1. Какие мышцы относятся к основным инспираторным и экспираторным ?

2. С помощью каких мышц осуществляется спокойный вдох ?

Советуем прочитать:  Упражнения для расслабления мышц ног и рук в руки

3. Какие мышцы относятся к вспомогательным инспираторным и экспираторным ?

4. С помощью каких мышц осуществляется форсированное дыхание ?

5. Что такое грудной и брюшной типы дыхания ?

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9461 — | 7333 — или читать все.

85.95.179.227 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Вопрос 12 Анатомия

12. Виды работы мышц. Дыхательные мышцы и брюшной пресс.

Различают несколько режимов работы мышц: преодолевающий, уступающий, удерживающий и смешанный режим.

При преодолевающей работе мышца преодолевает внешнюю нагрузку, при этом момент силы мышцы или группы мышц больше момента силы этой нагрузки. (При подтягивании на перекладине преодолевающая работа производится в фазе подъема туловища). Разновидностью преодолевающей работы является баллистическая работа мышц. Это резкое, быстрое преодолевающее сокращение после предварительного растягивания мышц. При этом мышца дает толчок звену тела и расслабляется, а последующее движение данного звена мышц продолжается по инерции. (Баллистический режим работы характерен для спортивных метаний).

При уступающей работе мышца, оставаясь напряженной постепенно расслабляется, уступая действию силы внешней нагрузки; момент силы мышцы при этом меньше момента внешней нагрузки. ( При подтягивании уступающий режим работы мышцы наблюдается в фазе опускания туловища в исходное положение)

При удерживающей работе мышцы происходит уравновешивание действия сопротивления, моменты сил равны, в результате чего движения нет.( Удерживать надежный хват на перекладине в течение заданного времени, напрямую зависит спортивный результат)

Другой пример: дельтовидная мышца при отведении руки в сторону, и удержании ее в горизонтальном положении и во время медленного приведения ее к туловищу напряжена, но работа ее не одинакова. Этап 1- преодолевающая работа, этап 2 – удерживающая работа мышц, этап 3 – уступающая работа мышц.

Происходящее при уступающей работе растягивание мышц приводит к накоплению в них энергии упругой деформации, которая в дальнейшем используется организмом для осуществления «возвратного движения». Уступающую работу мышц иногда называют релаксацией.

Дыхательные мышцы, благодаря которым осуществляются пери­одические изменения объема грудной клетки, относятся к попере­чнополосатой скелетной мускулатуре, но они отличаются от других скелетных мышц. Это единственные скелетные мышцы, от которых зависит жизнь; поэтому на протяжении всей жизни они должны ритмически сокращаться.

Мышцы, участвующие в механизме дыхания делятся на две группы: мышцы производящие вдох и мышцы производящие выдох. Каждая из этих групп делится на три подгруппы: основные, вспомогательные и косвенные.

а) основные дыхательные мышцы, которые при своем сокращении всегда участвуют в дыхательном движении. Это

— 1. Диафрагма, тонкая мышца, построенная из поперечнополосатой мышечной ткани, при сокращении которой происходит уплощение ее купола и вместе с тем увеличение объема грудной полости в вертикальном направлении.

— 2. Наружные и внутренние межреберные мышцы. Первые имеют большое плечо силы и большой момент вращения при вдохе, а вторые при выдохе.

— 3. Мышцы, поднимающие ребра имеются только в грудном отделе позвоночного столба. Они идут от поперечных отростков грудных позвонков вниз к близлежащему ребру.

— 4. Верхняя задняя зубчатая мышца начинается от остистых отростков двух нижних шейных и двух верхних грудных позвонков и прикрепляется к задней поверхности II-V ребер.

— 5. Нижняя задняя зубчатая мышца начинается от пояснично-грудной фасции в области остистых отростков двух нижних грудных и двух верхних поясничных позвонков и прикрепляется к задней поверхности четырех нижних ребер.

— 6. Квадратная мышца поясницы начинается от подвздошной кости поперечных отростков нижних поясничных позвонков., а прикрепляется к XII ребру и поперечным отросткам верхних поясничных позвонков. Вид неправильного вытянутого четырехугольника.

— 7. Подвздошно-реберная мышца, пучки которой фиксируются к подвздошной кости, крестцу и ребрам.

б) вспомогательные мышцы, это:

— 1. Лестничные мышцы — передняя, средняя и задняя .Передняя лестничная мышца начинается от поперечных отростков III-VI шейных позвонков и прикрепляется к бугорку I ребра. Средняя лестничная мышца начинается от поперечных отростков всех шейных позвонков, а прикрепляется к верхней поверхности I ребра. Задняя лестничная мышца начинается от поперечных отростков V и VI шейных позвонков и прикрепляется ко II ребру.

— 2. Грудино-ключично-сосцевидная мышца . Наиболее сильная мышца переднелатерального отдела шеи.

— 3. Малая грудная мышца начинается от II-V ребер поднимаясь вверх доходит до клювовидного отростка лопатки к которому и прикрепляется.

— 4. Подключичная мышца. Расположена между первым ребром и ключицей.

— 5. Большая грудная мышца имеет значительную толщину и ширину. Она покрывает спереди верхние ребра и участвует в образовании передней стенки подмышечной впадины.

— 6. Нижние пучки передней зубчатой мышцы. Она начинается зубцами от верхних девяти или восьми ребер и прикрепляется к нижнему углу лопатки.

— 7. Передние мышцы шеи – грудино-подъязычная, грудино –щитовидная.

— 8. Увеличению вертикального размера грудной полости способствует разгибание позвоночного столба, в котором участвуют остистая мышца, длиннейшая мышца и подвздошно-реберная мышца.

в) мышцы, оказывающие косвенное действие , это:

— 1. Верхняя часть трапециевидной мышцы, способствующая подниманию латерального угла лопатки и вместе с тем оттягиванию кверху места прикрепления малой грудной мышцы.

— 2. Ромбовидные мышцы, которые, поднимая лопатку , через нее и через малую грудную, а отчасти и через переднюю зубчатую способствуют подниманию ребер.

— 3. Мышца, поднимающая лопатку.

— 4. Ключичная головка грудино-ключично- сосцевидной мышцы.

Мышцы брюшного пресса . Мышцы брюшного пресса защищают внутренние органы и удерживают их в правильном положении. Они способствуют созданию красивого торса. Мышцы брюшного пресса должны быть развиты настолько, чтобы не только могли выдержать давление грудной клетки, а и активно участвовать в движении тела.

Кроме этого, живот должен быть не только красивым, но и его мышцы должны выполнять определенные функции. А это не всегда одно и то же. Так как мышцы брюшного пресса образуют брюшную стенку, они должны удерживать внутренние органы в определенном положении.

Кроме этого они еще и формируют осанку, и принимают активное участие в удержании позвоночника в определенном положении. То есть, ослабнет пресс, согнется вперед спина. Может и не сразу, но это необратимо. Следует знать, что мышцы брюшного пресса — это так называемые выносливые мышцы, которые требуют большого количества повторений при их тренировке.

Брюшной пресс — это широкие пласты мышц, которые ближе к срединной линии переходят в сухожилья. Эти сухожилья такие же, как и мышцы: плоские и широкие. Поскольку, как мы знаем, в строении человека нет костной опоры спереди, то правые и левые сухожилья соединяются вместе, и это соединение называют белой линией живота.

Мышцы брюшного пресса начинаются от грудной клетки, и заканчиваются на тазовых костях. Они помогают туловищу при всевозможных наклонах, скручиваниях, принимают активное участие в дыхании, и что очень важно, создают внутрибрюшное давление, регулирующее такие действия как мочеиспускание, роды, и тому подобное.

Группы мышц брюшного пресса расположены послойно, и делятся на три группы:

мышцы боковых стенок — это наружная, внутренние косые и поперечные мышцы живота;

мышцы передней стенки — это пирамидальная мышца и прямая мышца живота;

мышцы задней стенки — это квадратная мышца поясницы, большая поясничная мышца.

Эти мышцы живота и слагают брюшной пресс, тем самым предохраняя внутренности от наружного воздействия. Кроме этого, они, оказывая на них давление, фиксируют их в определенном положении и участвуют в движении позвоночника и ребер.

источник